Dynamic Modulation of Beta-Band Oscillations in the LGN and Their Role in Visual Processing

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Neuronal oscillations are a ubiquitous feature of thalamocortical networks and can be dynamically modulated across processing states, enabling thalamocortical communication to flexibly adapt to varying environmental and behavioral demands. The lateral geniculate nucleus (LGN), like all thalamic nuclei, engages in reciprocal synaptic interactions with the cortex, relaying retinal information to and receiving feedback input from primary visual cortex (V1). While retinal excitation is the primary driver of LGN activity, retinal synapses represent a minority of the total synaptic input onto LGN neurons, allowing for both retinogeniculate and geniculocortical signals to be influenced by nonretinal sources. To gain a holistic view of network processing in the geniculocortical pathway, we performed simultaneous extracellular recordings from the LGN and V1 of behaving macaque monkeys, measuring local field potentials (LFPs) and spiking activity. These recordings revealed prominent beta-band oscillations coherent between the LGN and V1 that influenced spike timing in the LGN and were statistically consistent with a feedforward process from the LGN to V1. These thalamocortical oscillations were suppressed by visual stimulation, spatial attention, and behavioral arousal, strongly suggesting that these oscillations are not a feature of active visual processing. Instead, they appear analogous to occipital lobe, alpha oscillations recorded in humans and may represent a signature of signal suppression that occurs during periods of low engagement or active distractor suppression.

Article activity feed