The copper chaperone ATOX1 exhibits differential protein-protein interactions and contributes to skeletal myoblast differentiation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Copper is an essential but potentially toxic nutrient required for a variety of biological functions. Mammalian cells use a complex network of copper transporters and metallochaperones to maintain copper homeostasis. Previous work investigating the role of copper in various disease states has highlighted the importance of copper transporters and metallochaperones. However, questions remain about how copper distribution changes under dynamic conditions like tissue differentiation. We previously reported that the copper exporter ATP7A is required for skeletal myoblast differentiation and that its expression changes in a differentiation dependent manner. Here, we sought to further understand the ATP7A-mediated copper export pathway by examining ATOX1, the copper chaperone that delivers copper to ATP7A. To investigate the role of ATOX1 in a dynamic cellular context, we characterized its binding partners during myoblast differentiation using the proximity labeling protein APEX2 to biotinylate proteins near ATOX1. We discovered that the ATOX1 interactome undergoes dramatic changes as myoblasts differentiate. These dynamic interactions correlate with distinct phenotypes of ATOX1 deficiency in proliferating and differentiated cells. Together, our results highlight the dynamic interactome of ATOX1 and its contribution to myoblast differentiation.

Article activity feed