Recruitment of Mre11 to recombination sites during meiosis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The Mre11 nuclease, part of the conserved MRX complex involved in the repair of DNA double-strand breaks (DSBs), is also essential to initiate meiotic recombination in budding yeast by promoting Spo11-induced DSBs. Recruitment of Mre11 to meiotic DSB sites depends on Rec114-Mei4 and Mer2 (RMM) that organize the meiotic DSB machinery by a mechanism involving biomolecular condensation. Here, we explored the role of Mre11 during meiosis and its relationship to RMM condensation. We show that both Mre11 and MRX complexes form DNA-dependent, hexanediol sensitive condensates in vitro. In vivo , Mre11 assembles into DNA damage-dependent foci in vegetative cells and DSB-independent foci in meiotic cells. In vitro condensates and in vivo foci both depend on the C-terminal intrinsically-disordered region (IDR) of Mre11. Importantly, while the Mre11 IDR is dispensable for vegetative DNA repair it is essential during meiosis. The C-terminus of Mre11 forms a short α-helix that binds a conserved region of Mer2, and mutating residues within this interface reduces Mre11 foci and DSB formation. Finally, we identified a SUMO-interacting motif within the Mre11 IDR that enhances recruitment of Mre11 during meiosis and facilitates DSB formation. This work identifies multiple mechanisms that collaborate to recruit Mre11 during meiosis to initiate recombination.