One-Pot Isothermal Linear Amplification and Cas12a-based Nucleic Acid Detection

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

CRISPR-based nucleic acid diagnostics are a promising class of point-of-care tools that could dramatically improve healthcare outcomes for millions worldwide. However, these diagnostics require nucleic acid pre-amplification, an additional step that complicates deployment to low resource settings. Here, we developed CATNAP ( Ca s t rans - n uclease detection of a mplified p roducts), a method that integrates isothermal linear DNA amplification with Cas12a detection in a single reaction. CATNAP uses a nicking enzyme and DNA polymerase to continuously generate single-stranded DNA, activating Cas12a’s trans -cleavage activity without damaging the template. We optimized enzyme combinations, buffer conditions, and target selection to achieve high catalytic efficiency. CATNAP successfully distinguished between high- and low-risk HPV strains and detects HPV-16 in a cervical cancer crude cell lysate at room temperature with minimal equipment, offering advantages over PCR-based approaches. We conclude that CATNAP bridges the sensitivity gap in CRISPR diagnostics while maintaining simplicity, making accurate disease detection more accessible in resource-limited settings.

Article activity feed