Fluctuation structure predicts genome-wide perturbation outcomes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Pooled single-cell perturbation screens represent powerful experimental platforms for functional genomics, yet interpreting these rich datasets for meaningful biological conclusions remains challenging. Most current methods fall at one of two extremes: either opaque deep learning models that obscure biological meaning, or simplified frameworks that treat genes as isolated units. As such, these approaches overlook a crucial insight: gene co-fluctuations in unperturbed cellular states can be harnessed to model perturbation responses. Here we present CIPHER (Covariance Inference for Perturbation and High-dimensional Expression Response), a conceptual framework leveraging linear response theory from statistical physics to predict transcriptome-wide perturbation outcomes using gene co-fluctuations in unperturbed cells. We validated CIPHER on synthetic regulatory networks before applying it to 11 large-scale single-cell perturbation datasets covering 4,234 perturbations and over 1.36M cells. CIPHER robustly recapitulated genome-wide responses to single and double perturbations by exploiting baseline gene covariance structure. Importantly, eliminating gene-gene covariances, while retaining gene-intrinsic variances, reduced model performance by 11-fold, demonstrating the rich information stored within baseline fluctuation structures. Moreover, gene-gene correlations transferred successfully across independent experiments of the same cell type, revealing stereotypic fluctuation structures. Furthermore, CIPHER outperformed conventional differential expression metrics in identifying true perturbations while providing uncertainty-aware effect size estimates through Bayesian inference. Finally, most genome-wide responses propagated through the covariance matrix along approximately three independent and global gene modules. CIPHER underscores the importance of theoretically-grounded models in capturing complex biological responses, highlighting fundamental design principles encoded in cellular fluctuation patterns.

Article activity feed