Cardiac Measurement Calculation on Point-of-Care Ultrasonography with Artificial Intelligence

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Introduction

Point-of-care ultrasonography (POCUS) enables clinicians to obtain critical diagnostic information at the bedside especially in resource limited settings. This information may include 2D cardiac quantitative data, although measuring the data manually can be time-consuming and subject to user experience. Artificial intelligence (AI) can potentially automate this quantification. This study assessed the interpretation of key cardiac measurements on POCUS images by an AI-enabled device (AISAP Cardio V1.0).

Methods

This retrospective diagnostic accuracy study included 200 POCUS cases from four hospitals (two in Israel and two in the United States). Each case was independently interpreted by three cardiologists and the device for seven measurements (left ventricular (LV) ejection fraction, inferior vena cava (IVC) maximal diameter, left atrial (LA) area, right atrial (RA) area, LV end diastolic diameter, right ventricular (RV) fractional area change and aortic root diameter). The endpoints were the root mean square error (RMSE) of the device compared to the average cardiologist measurement (LV ejection fraction and IVC maximal diameter were primary endpoints; the other measurements were secondary endpoints). Predefined passing criteria were based on the upper bounds of the RMSE 95% confidence intervals (CIs). The inter-cardiologist RMSE was also calculated for reference.

Results

The device achieved the passing criteria for six of the seven measurements. While not achieving the passing criterion for RV fractional area change, it still achieved a better RMSE than the inter-cardiologist RMSE. The RMSE was 6.20% (95% CI: 5.57 to 6.83; inter-cardiologist RMSE of 8.23%) for LV ejection fraction, 0.25cm (95% CI: 0.20 to 0.29; 0.36cm) for IVC maximal diameter, 2.39cm 2 (95% CI: 1.96 to 2.82; 4.39cm 2 ) for LA area, 2.11cm 2 (95% CI: 1.75 to 2.47; 3.49cm 2 ) for RA area, 5.06mm (95% CI: 4.58 to 5.55; 4.67mm) for LV end diastolic diameter, 10.17% (95% CI: 9.01 to 11.33; 14.12%) for RV fractional area change and 0.19cm (95% CI: 0.16 to 0.21; 0.24cm) for aortic root diameter.

Discussion

The device accurately calculated these cardiac measurements especially when benchmarked against inter-cardiologist variability. Its use could assist clinicians who utilize POCUS and better enable their clinical decision-making.

Article activity feed