Bilateral equalization of synaptic output in olfactory glomeruli of Xenopus tadpoles

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Odorants stimulate olfactory sensory neurons (OSNs) to create a bilateral sensory map defined by a set of glomeruli present in the left and right olfactory bulbs. Using Xenopus tropicalis tadpoles we challenged the notion that glomerular activation is exclusively determined ipsilaterally. Glomerular responses evoked by unilateral stimulation were potentiated following transection of the contralateral olfactory nerve. The gain of function was observed as early as 2 hours after injury and faded away with a time constant of 4 days. Potentiation was mediated by the presence of larger and faster calcium transients driving glutamate release from OSN axon terminals. The cause was the reduction of the tonic presynaptic inhibition exerted by dopamine D 2 receptors. Inflammatory mediators generated by injury were not involved. These findings reveal the presence of a bilateral modulation of glomerular output driven by dopamine that compensates for imbalances in the number of operative OSNs present in the two olfactory epithelia. Considering that the constant turnover of OSNs is an evolutionary conserved feature of the olfactory system and determines the innervation of glomeruli, the compensatory mechanism here described may represent a general property of the vertebrate olfactory system to establish an odor map.

Article activity feed