US6 hijacks the peptide-loading complex by trapping transporter-chaperone dynamics
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Adaptive immune responses are initiated by major histocompatibility class I (MHC I) presentation of antigenic peptides on the cell surface. This process relies on the peptide-loading complex (PLC), a dynamic transporter-multichaperone assembly in the endoplasmic reticulum (ER), to ensure high-fidelity selection, editing, and loading of peptides onto MHC I heterodimers. The PLC is the primary target for viral immune evasion, elicited in particular by human cytomegalovirus (HCMV), causing lifelong infections with severe risks for immunocompromised individuals. While the overall architecture of the PLC is known, how its activity is jeopardized by viral immune evasins remains unclear. Here, we present the 2.59-2.88 Å cryogenic electron microscopy structure of native human PLC associated with the HCMV immune evasin US6. US6 inhibits the heterodimeric transporter associated with antigen processing (TAP1/2) by latching its transmembrane helix laterally onto TAP2 and using its central disulfide-rich domain to mimic a translocating peptide. This effectively plugs the ER-lumenal exit and locks TAP in an outward-facing open conformation with closed nucleotide-binding domains and asymmetrically occluded ATP and ADP. The structure also highlights the role of the unique N-terminal transmembrane domains of TAP as dynamic scaffolds that recruit the MHC I-specific chaperone tapasin by clamping its transmembrane helix to the core transmembrane domain of each transporter subunit. Our findings uncover the molecular mechanism of US6-mediated viral immune evasion and reveal potential targets for therapeutic modulation of antigen presentation in cancer and infectious diseases.