Self-inactivating AAV-CRISPR at different ages enables sustained amelioration of Huntington’s disease deficits in BAC226Q mice
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Huntington’s disease (HD) is a monogenic autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the HTT gene, yielding a gain-of-toxic-function mutant Huntingtin protein mHTT. CRISPR/Cas9 is a potentially powerful therapeutic tool for treating HD by eliminating mutant HTT (m HTT ) gene. We developed a specific SaCas9 guide RNA to target human m HTT , and a self-inactivating gene editing system that abolishes SaCas9 after a short transient expression for high gene editing efficiency and maximal safety to prevent off-target effects. Both conventional and the new self-inactivating gene editing systems achieved successful elimination of m HTT gene, 60-90% mHTT protein and 90% of mHTT aggregation in BAC226Q HD mouse brains, which resulted in significant long-term rescue of neural pathology, motor deficits, weight loss and shortened lifespan. These beneficial effects were observed when gene editing was applied before, at and well after the on-set of pathological and behavioral abnormalities. These proof-of-concept data demonstrate that gene editing can be a highly effective therapeutic approach for HD and other inherited neurodegenerative diseases.
One Sentence Summary
Self-inactivating CRISPR for mutant huntingtin in HD mice achieved long-term rescue of neural pathology, motor deficits, weight loss and survival.