Bidirectional regulation of glycoprotein nonmetastatic melanoma protein B by β-glucocerebrosidase deficiency in GBA1 isogenic dopaminergic neurons from a patient with Gaucher disease and parkinsonism

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Variants in GBA1 are common genetic risk factors for several synucleinopathies. The increased risk has been attributed to the toxic effects of misfolded glucocerebrosidase (GCase) (gain-of-function), and the accumulation of lipid substrates due to reduced enzyme activity (loss-of-function). To delineate GBA1 pathogenicity, an iPSC line was generated from a patient with both type 1 Gaucher disease ( GBA1 : N370S/N370S; p.N409S/p.N409S) and Parkinson disease (PD). From this line, we created a reverted wild-type (WT) line and a GBA1 knockout (KO) line to eliminate misfolded GCase and intensify lipid accumulation. N370S/N370S and KO dopaminergic neurons (DANs) exhibited decreasing GCase levels and progressive accumulation of lipid substrates compared to WT DANs. Notably, the expression of GPNMB , whose levels correlate with PD risk, was upregulated by the mild lipid accumulation in N370S/N370S DANs but disrupted in KO DANs. These findings refine the loss-of-function mechanism by associating PD risk levels of GPNMB with lipid levels specific to GBA1 risk variants.

Article activity feed