α-Synuclein aggregates induce mitochondrial damage and trigger innate immunity to drive neuron–microglia communication

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Tunneling nanotubes (TNTs) enable direct intercellular transfer of macromolecules, organelles, and pathogenic protein aggregates. While α-synuclein (α-Syn) aggregates are known to promote TNT formation, the underlying mechanisms remain poorly defined. Here, using human neuronal and microglial cell lines, as well as iPSC-derived dopaminergic neurons and microglia, we show that α-Syn aggregates induce severe mitochondrial damage, leading to cytosolic release of mitochondrial DNA (mtDNA) and activation of the cGAS–STING–NF- κB–IRF3 pathway. This innate immune response drives actin cytoskeleton remodeling and the formation of TNT-like structures, promoting intercellular transfer of α-Syn from neurons to microglia. Additionally, neuronal cells transfer damaged mitochondria to microglia, where they undergo lysosome-mediated degradation. Neuron-to-microglia communication under α-Syn- induced stress also triggers a bystander inflammatory response in microglia, suggesting a neuroimmune activation. Our findings identify mitochondrial damage and STING-mediated inflammation as key drivers of TNT formation and α-Syn propagation, highlighting new potential targets to modulate disease progression in Synucleinopathies.

Article activity feed