MEGaNorm: Normative Modeling of MEG Brain Oscillations Across the Human Lifespan

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Normative modeling provides a principled framework for quantifying individual deviations from typical brain development and is increasingly used to study heterogeneity in neuropsychiatric conditions. While widely applied to structural phenotypes, functional normative models remain underdeveloped. Here, we introduce MEGaNorm, the first normative modeling framework for charting lifespan trajectories of resting-state magnetoencephalography (MEG) brain oscillations. Using a large, multi-site dataset comprising 1,846 individuals aged 6–88 and spanning three MEG systems, we model relative oscillatory power in canonical frequency bands using hierarchical Bayesian regression, accounting for age, sex, and site effects. To support interpretation at multiple scales, we introduce Neuro-Oscillo Charts, visual tools that summarize normative trajectories at the population level and quantify individual-level deviations, enabling personalized assessment of functional brain dynamics. Applying this framework to a Parkinson’s disease cohort (n = 160), we show that normative deviation scores reveal disease-related abnormalities and uncover a continuum of patients in theta–beta deviation space. This work provides the first lifespan-encompassing normative reference for MEG oscillations, enabling population-level characterization and individualized benchmarking. All models and tools are openly available and designed for federated, continual adaptation as new data become available, offering a scalable resource for precision neuropsychiatry.

Article activity feed