Giant viruses specific to deep oceans show persistent presence and activity

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Giant viruses (GVs) of the phyla Nucleocytoviricota and Mirusviricota are large double-stranded DNA viruses that infect diverse eukaryotic hosts and impact biogeochemical cycles. Their diversity and ecological roles have been well studied in the photic layer of the ocean, but less is known about their activity, population dynamics, and adaptive strategies in the aphotic layers. Here, we conducted eight seasonal time-series samplings of the surface and mesopelagic layers at a coastal site in Muroto, Japan, and integrated 18S metabarcoding, metagenomic, and metatranscriptomic data to investigate deep-sea GVs and their potential hosts. The analysis identified 48 GV genomes including six that were exclusively detected in the mesopelagic layer. Notably, these mesopelagic-specific GVs showed persistent activity across seasons. To investigate the global deep-sea-specific GV distribution, we compiled GV reference genomic data from the OceanDNA MAG project and other resources, and analyzed 1,890 marine metagenomes. This revealed 101 deep-sea-specific GVs, distributed across the GV phylogenetic tree, indicating that adaptation to deep-sea environments has occurred in multiple lineages. One clade enriched with deep-sea-specific GVs included one GV identified in our Muroto sampling, which displayed a wide geographic distribution. Seventy-six KEGG orthologs and 74 Pfam domains were specifically enriched in deep-sea-specific GVs, encompassing functions related to the ubiquitin system, energy metabolism, and nitrogen acquisition. These findings support the scenario that distinct GV lineages have adapted to hosts in aphotic marine environments by altering their gene repertoire to thrive in this unique habitat.

Article activity feed