Neuromorphic hierarchical modular reservoirs

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Modularity is a fundamental principle of brain organization, reflected in the presence of segregated sub-networks that enable specialized information processing. These small, densely connected modules are often nested within larger, higher-order modules, giving rise to a hierarchical modular architecture. This structure is posited to balance information segregation in specialized neuronal communities and global integration via intermodular communication. Yet, how hierarchical modularity shapes network function remains unclear. Here we introduce a simple blockmodeling framework for generating and comparing multi-level hierarchical modular networks and implement them as recurrent neural network reservoirs to evaluate their computational capacity. We show that hierarchical modular networks enhance memory capacity, support multitasking, and give rise to a broader range of temporal dynamics compared to strictly modular and random networks. These functional advantages can be traced to topological features enriched in hierarchical modular networks, which include reciprocal and cyclic network motifs. To test whether the computational advantages of hierarchical modularity subsist in empirical human brain structural connectivity patterns, we develop a novel hierarchical modularity-preserving network null model, allowing us to isolate the positive effect of empirical hierarchical modularity patterns on memory capacity. To evaluate the biomimetic validity of connectome-informed reservoir dynamics, we compare reservoir timescales to empirical brain timescales derived from MEG data and find that hierarchical modularity contributes to shaping brain-like neural timescales. Altogether, across multiple benchmarks, these results show that hierarchical modularity endows networks with computationally advantageous properties, providing insight into the relationship between neural network structure and function with potential applications for the design of neuromorphic computing architectures.

Article activity feed