The titin N2A-MARP signalosome constrains muscle longitudinal hypertrophy in response to stretch
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Titin-based mechanosensing is a key driver of trophic signaling in muscle, yet the downstream pathways linking titin sensing to muscle remodeling remain poorly understood. To investigate these signaling mechanisms, we utilized unilateral diaphragm denervation (UDD), an in vivo model that induces titin-stiffness-dependent hypertrophy via mechanical stretch. Using UDD in rats and mice, we characterized the longitudinal hypertrophic response and distinguished stretch-induced signaling from denervation effects by performing global transcriptomic and proteomic analyses following UDD and bilateral diaphragm denervation (BDD) in rats. Our findings identified upregulation of titin-associated muscle ankyrin repeat proteins (MARPs). Subsequent phosphorylation enrichment mass spectrometry in mouse diaphragm highlighted the involvement of the N2A-element. UDD in MARP knockout (KO) mice resulted in enhanced longitudinal hypertrophy, with Western blot analysis revealing activation of the mTOR pathway. Furthermore, pharmacological inhibition of mTORC1 with rapamycin suppressed longitudinal hypertrophy, demonstrating that mTOR signaling regulates titin-mediated hypertrophic growth in a MARP-dependent manner. These findings establish MARPs as key modulators of titin-based mechanotransduction and highlight mTORC1 as a central regulator of longitudinal muscle hypertrophy.