Establishing Conserved Biosynthetic Gene Clusters of the Phylum Myxococcota
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
A surge in sequenced myxobacteria catalyzed by advancements in long read genome and metagenome sequencing has provided sufficient data to scrutinize the conserved biosynthetic gene clusters (BGCs) within the phylum Myxococcota. Provided the utility of myxobacteria in environmental nutrient cycles and discovery of novel therapeutic leads, we sought to determine any conserved specialized metabolism in the phylum. Using a pan-genome approach to analyze eleven genera and 195 sequenced genomes including ten newly reported myxobacterial isolate, we observed five conserved BGCs. All five clusters encode for characterized metabolites with established ecological roles for four of the metabolites, and none of the metabolites are known toxins. Validation of our approach was done by analyzing Myxococcota genera without sufficient, sequenced representatives for pan-genome analysis to observe the presence/absence of these five clusters. This approach enabled observation of genus-level conservation of BGCs with varying degrees of confidence due to diversity of sequenced species within each genus. The indigoidine BGC typically found in Streptomyces spp. was notably conserved in Melittangium ; heterologous expression of the core biosynthetic gene bspA in Escherichia coli and subsequent detection of indigoidine confirmed the identity of the indigoidine cluster. Conserved BGCs in myxobacteria reveal maintenance of biosynthetic pathways and cognate metabolites with ecological roles as chemical signals and stress response; these observations suggest competitive specialization of secondary metabolism and toxin production in myxobacteria.