A balance between nucleating and elongating actin filaments controls deformation of protein condensates
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Protein condensates use multivalent binding and surface tension to assemble actin filaments into diverse architectures, reminiscent of filopodia and stress fibers. During this process, nucleation of new filaments and elongation of existing filaments inherently compete for a shared pool of actin monomers. Here we show that a balance between these competing processes is required to deform condensates of VASP, an actin binding protein, into structures with high aspect ratios. Addition of magnesium, which promotes filament nucleation, helped actin to deform condensates into high aspect ratio structures. In contrast, addition of profilin, which inhibits filament nucleation, allowing existing filaments to elongate, caused actin to assemble into ring-like bundles that failed to substantially increase condensate aspect ratio. Computational modeling helped to explain these results by predicting that a group of short linear filaments, which can apply asymmetric pressure to the condensate boundary, is needed to increase condensate aspect ratio. In contrast, a small number of long filaments with the same total actin content should fail to overcome the droplet surface tension, forming a ring-like bundle. To test these predictions, we introduced gelsolin, which severed log filaments within rings, creating new barbed ends. The resulting set of shorter filaments regained the ability to deform condensates into high aspect ratio structures. Collectively, these results suggest that a balance of actin filament nucleation and elongation is required to deform protein condensates. More broadly, these findings illustrate how protein condensates can balance multiple kinetic processes to direct the assembly of diverse cytoskeletal architectures.