High-resolution in situ structures of hantavirus glycoprotein tetramers
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
New World hantaviruses cause severe infections in humans, with case fatality rates approaching 40%. Previous structural studies have advanced our understanding of hantavirus glycoprotein architecture and function, however, the lack of high-resolution in situ structures of the glycoprotein tetramer and its lattice organization has limited mechanistic insights into viral assembly, entry, and antigenicity. Here, we leveraged a virus-like particle (VLP) system to establish a cryo-electron microscopy workflow for lattice-forming viral glycoproteins. This enabled the determination of a 2.35 Å resolution structure of the membrane-embedded Andes virus (ANDV) glycoprotein tetramer, as well as structures of dimers of tetramers and a complex with antibody ADI-65534. These structures reveal previously uncharacterized features of glycoprotein organization, stability, and pH-sensing. Immunization of mice with self-amplifying replicon RNA (repRNA) encoding ANDV-VLPs elicited high levels of glycoprotein-binding antibodies but equivalent titers of neutralizing antibodies compared to repRNA-encoded native ANDV glycoprotein complex. Collectively, these findings advance our understanding of hantavirus glycoprotein assemblies and their function, laying a foundation for structure-based vaccine design efforts.