Step-by-Step Approach to Design Image Classifiers in AI: An Exemplary Application of the CNN Architecture for Breast Cancer Diagnosis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In recent years, different Convolutional Neural Networks (CNNs) approaches have been applied for image classification in general and specific problems such as breast cancer diagnosis, but there is no standardising approach to facilitate comparison and synergy. This paper attempts a step-by-step approach to standardise a common application of image classification with the specific problem of classifying breast ultrasound images for breast cancer diagnosis as an illustrative example. In this study, three distinct datasets: Breast Ultrasound Image (BUSI), Breast Ultrasound Image (BUI), and Ultrasound Breast Images for Breast Cancer (UBIBC) datasets have been used to build and fine-tune custom and pre-trained CNN models systematically. Custom CNN models have been built, and hence, transfer learning (TL) has been applied to deploy a broad range of pre-trained models, optimised by applying data augmentation techniques and hyperparameter tuning. Models were trained and tested in scenarios involving limited and large datasets to gain insights into their robustness and generality. The obtained results indicated that the custom CNN and VGG19 are the two most suitable architectures for this problem. The experimental results highlight the significance of employing an effective step-by-step approach in image classification tasks to enhance the robustness and generalisation capabilities of CNN-based classifiers.