Functional rescue of a fatal ERAD mutation via alternative splicing

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Endoplasmic reticulum (ER)-associated degradation (ERAD) is essential for cellular proteostasis, with the SEL1L-HRD1 protein complex targeting misfolded proteins in the ER for proteasomal degradation. Disruption of this pathway underlies a recently identified infant-onset neurodevelopmental disorder (ENDI syndrome), characterized by profound developmental delay, microcephaly, and immune deficiency. Its most severe form, ENDI with agammaglobulinemia (ENDI-A), is driven by a bi-allelic SEL1L Cys141Tyr (C141Y) mutation within the fibronectin II (FNII) domain, for which no treatment currently exists. Here, we serendipitously uncover a striking mechanism of intrinsic rescue in knock-in mouse models of the C141Y mutation: enhanced usage of an alternative splice donor site within exon 4 bypasses the mutant FNII-encoding region, restoring ERAD activity and rescuing key disease phenotypes including perinatal lethality, growth retardation, B cell deficiency, and neurodevelopmental defects. Building on this discovery, we demonstrate that antisense oligonucleotide (ASO)-mediated exon skipping in patient-derived fibroblasts generates a truncated yet functional SEL1L protein, fully rescuing ERAD function and ER proteostasis. These results establish RNA splicing modulation as a viable therapeutic strategy for ERAD deficiency and extend the clinical potential of exon-skipping therapy to diseases of protein misfolding.

ONE-SENTENCE SUMMARY

This study reports the discovery of using antisense oligonucleotides (ASOs) to rescue the biallelic SEL1L C141Y variant, offering a potential therapeutic strategy.

Article activity feed