Profiling Cytosolic Drug Delivery in Mammalian Cells: A Generalizable Assay for Intracellular Accumulation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The ability of biologically active molecules to access intracellular targets remains a critical barrier in drug development. While assays for measuring cellular uptake exist, they often fail to distinguish between membrane-associated or endosomal trapped compounds and those that successfully reach the cytosol. Here, we present the Chloroalkane HaloTag Azide-based Membrane Penetration (CHAMP) Assay, a novel high-throughput method that employs a minimally disruptive azide tag to report the cytosolic accumulation of diverse molecules in mammalian cells. The CHAMP assay utilizes HaloTag-expressing cells and strain-promoted azide-alkyne cycloaddition (SPAAC) chemistry to quantify the presence of azide-tagged test compounds in the cytosol. We demonstrate the versatility of this approach by evaluating the accumulation profiles of small molecules, peptides, and proteins, revealing how structural variations and stereochemical differences influence cytosolic penetration. Our findings with cell-penetrating peptides confirm established structure-activity relationships, with longer polyarginine sequences showing enhanced accumulation. Additionally, we observed that C -terminal amidation and D-amino acid substitutions significantly impact cellular penetration. When applied to supercharged proteins and antibiotics, CHAMP successfully discriminates between compounds with varying accumulation capabilities. This method provides a robust platform for screening cytosolic accumulation while minimizing the confounding effects of large tags on molecular permeability, potentially accelerating the development of therapeutics targeting intracellular pathways.

Article activity feed