Microbial hydrocarbon degradation potential of the Baltic Sea ecosystem
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background
The Baltic Sea receives petroleum hydrocarbons from various point sources. The degradation of these contaminants in the environment is typically facilitated by a variety of microorganisms that possess a range of genes and metabolic functions related to the degradation of various hydrocarbon substrates. However, our understanding of natural attenuation and the microbial capacity to degrade these contaminants within the Baltic Sea ecosystem remains limited. In this study, we compiled metagenomes from the benthic and pelagic ecosystems across the Baltic Sea to identify microorganisms and characterize their genes and metabolic functions involved in the degradation of hydrocarbon compounds.
Results
Known hydrocarbon-degrading phyla, i.e., Pseudomonadota, Myxococcota A, Actinomycetota, and Desulfobacterota, were identified within the Baltic Sea metagenome-assembled genomes (MAGs). Notably, 80% of the MAGs exhibited multiple hydrocarbon degradation gene annotations (>10 reads per kilobase million). Aerobic degradation was the predominant pathway for hydrocarbon degradation across environmental samples. Hydrocarbon degradation gene abundances varied among samples and Baltic Sea subbasins, with long-chain alkanes and dibenzothiophene compounds being the preferred substrates. Species richness and diversity of both benthic and pelagic microorganisms positively correlated with hydrocarbon degradation gene diversity, with the pelagic ecosystem exhibiting significantly higher richness and diversity compared to the benthic ecosystem. Additionally, the composition of the hydrocarbon degradation genes across the Baltic Sea subbasins was influenced by oil spill history, with areas that experienced higher spill volumes showing lower microbial diversity, suggesting potential enrichment of specific hydrocarbon degraders. Among the environmental factors assessed, depth played a significant role in shaping the composition of genes involved in hydrocarbon degradation within the Baltic Sea.
Conclusions
Using metagenomics, we profiled the native microorganisms associated with hydrocarbon degradation in the Baltic Sea. This knowledge will aid in understanding the natural capacities of microbial communities, potentially linked to the natural attenuation of hydrocarbon pollutants in the area. Insights into microbial degradation potential can enhance predictions of petroleum pollutant persistence and accumulation, support mitigation strategies for marine pollution, and reveal the ecological resilience of native microbial communities in marine ecosystems.