Paraventricular Thalamus Hyperactivity Mediates Stress-Induced Sensitization of Unlearned Fear but Not Stress-Enhanced Fear Learning (SEFL)
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Exposure to stress can cause long-lasting enhancement of fear and other defensive responses that extend beyond the cues or contexts associated with the original traumatic event. These nonassociative consequences of stress, referred to as fear sensitization, are thought to underlie some symptoms of trauma-related disorders. Fear sensitization has been predominately studied using the Stress-Enhanced Fear Learning (SEFL) paradigm, which models the stress-induced amplification of fear learning. Less is known about the mechanisms through which unlearned fear responses are sensitized by stress. Here, we investigated the neural mechanisms for sensitization of unlearned fear responses using a paradigm we termed Stress-Enhanced Fear Responding (SEFR). In this model, mice exposed to a single session of footshock stress exhibit enhanced freezing to a novel tone stimulus. To investigate brain regions that might mediate SEFR, we first used c-Fos mapping to identify neural activity changes associated with stress-induced enhancement of unlearned fear. Our c-Fos screen identified the posterior paraventricular thalamus (pPVT) as a region that was persistently hyperactive after footshock stress and whose activity correlated with behavioral expression of SEFR. Using fiber photometry, we observed that SEFR, but not SEFL, was associated with increased activity in the pPVT. Next, we found that chemogenetic inhibition of the pPVT blocked both the induction of SEFR during stress and its later expression, while artificial stimulation of pPVT in stress-naive mice was sufficient to recapitulate SEFR. Interestingly, pPVT inhibition or stimulation did not affect acquisition or expression of SEFL.
In conclusion, our results indicate that sensitization of fear learning (SEFL) and sensitization of unlearned fear (SEFR) have distinct neural mechanisms. Our results identify pPVT hyperactivity as a mechanism for stress-induced sensitization of unlearned fear and highlight pPVT as a potential target for treating arousal and reactivity symptoms of trauma- and stressor-related disorders.