Towards model-based design of causal manipulations of brain circuits with high spatiotemporal precision
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Recent advancements in neurotechnology enable precise spatiotemporal patterns of micros- timulations with single-cell resolution. The choice of perturbation sites must satisfy two key criteria: efficacy in evoking significant responses and selectivity for the desired target effects. This choice is currently based on laborious trial-and-error procedures, unfeasible for sequences of multi-site stimulations. Efficient methods to design complex perturbation patterns are ur- gently needed. Can we design a spatiotemporal pattern of stimulation to steer neural activity and behavior towards a desired target? We outline a method for achieving this goal in two steps. First, we identify the most effective perturbation sites, or hubs, only based on short observations of spontaneous neural activity. Second, we provide an efficient method to design multi-site stimulation patterns by combining approaches from nonlinear dynamical systems, control theory and data-driven methods. We demonstrate the feasibility of our approach using multi-site stimulation patterns in recurrent network models.