C9orf72 polyGA knock-in mice exhibit mild motor and proteomic changes consistent with ALS/FTD
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
A GGGGCC repeat expansion in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The repeat expansion is translated into five different dipeptide repeat proteins: polyGA, polyGP, polyGR, polyAP and polyPR. To investigate the effect of polyGA, which is the most abundant dipeptide repeat protein in patient brains, we used CRISPR/Cas9 to insert 400 codon-optimized polyGA repeats immediately downstream of the mouse C9orf72 start codon. This generated (GA)400 knock-in mice driven by the endogenous mouse C9orf72 promoter, coupled with heterozygous C9orf72 reduction. (GA)400 mice develop subtle pathology including mild motor dysfunction characterized by impaired rotarod performance. Quantitative proteomics revealed polyGA expression caused protein alterations in the spinal cord, including changes in previously identified polyGA interactors. Our findings show that (GA)400 mice are a complementary in vivo model to better understand C9ALS/FTD pathology and determine the specific role of single DPRs in disease.