Slow-Timescale Regulation of Dopamine Release and Mating Drive Over Days
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The rise and fall of motivational states may take place over timescales as long as many days. We used mouse mating behavior to model how the brain orchestrates slow-timescale changes in motivation. Male mice become sexually satiated after successful matings, and their motivation to mate gradually recovers over a week. Using deep-brain fluorescence-lifetime imaging in the medial preoptic area (MPOA), we found that tonic dopamine transmission—which regulates mating drive—also declined after mating and re-emerged over a week. Two mechanisms regulated dopamine transmission. First, successful mating transiently reduced tonic firing of hypothalamic dopamine-releasing neurons, thereby inhibiting dopamine release and mating behavior. Second, mating reduced the ability of these neurons to produce and release dopamine, and this ability gradually returned over the week-long recovery time course. Therefore, fast and slow mechanisms of neuronal plasticity cooperate to control the early and late phases of motivational dynamics, respectively.