Experimental Genetics Validation of Plasmodium falciparum Gametogenesis Essential Protein 1 (GEP1) as a Transmission Blocking Target

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Transmission of Plasmodium parasites to the Anopheles vector critically depends on swift activation of mature gametocytes upon entry into the mosquito midgut. Induction of gametogenesis requires two simultaneous stimuli, a temperature drop and xanthurenic acid. Previous work in the murine malaria model Plasmodium yoelii identified a protein, termed gametogenesis essential protein ( GEP1 ), with a suggested role in xanthurenic acid-dependent activation of gametes. Here, we present an experimental genetics characterization of GEP1 in the human pathogen Plasmodium falciparum . Using CRISPR-Cas9 gene editing we generated PfGEP1 loss-of-function lines and analyzed their progression until gametocyte maturation. We show a complete defect in both male and female gametogenesis caused by disruption of PfGEP1 . Pfgep1(-) gametocytes do not produce gametes when activated with xan-thurenic acid or a drop in temperature. This defect could not be overcome by the phosphodiesterase inhibitor Zaprinast, which induces gametogenesis. We also explored GEP1 haplotypes in P. falciparum parasites circulating in endemic regions and show the presence of two non-synonymous SNPs, resulting in V241L and S263P mutations, in 12% and 20% of 49 sentinel samples, respectively. Together, our data indicate that GEP1 plays a central role in the gamete activation process independent of xanthurenic acid and validates Pf GEP1 as a promising transmission blocking target.

Article activity feed