Sequential transcriptional gates in the thalamo-cortical circuit coordinate memory stabilization
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The molecular mechanisms that enable memories to persist over long time-scales from days to weeks and months are still poorly understood. To develop insights we created a behavioral task where, by varying the frequency of learned associations, mice formed multiple memories but only consolidated some, while forgetting others, over the span of weeks. We then monitored circuit-specific molecular programs that diverge between consolidated and forgotten memories. We identified multiple distinct waves of transcription, i.e., cellular macrostates, specifically in the thalamo-cortical circuit, that defined memory persistence. Notably, a small set of transcriptional regulators orchestrated broad molecular programs that enabled entry into these macrostates. Targeted CRISPR-knockout studies revealed that while these transcriptional regulators had no effects on memory formation, they had prominent, causal, and strikingly time-dependent roles in memory stabilization. In particular, the calmodulin-dependent transcription factor Camta1 was required for initial memory maintenance over days, while Tcf4 and the histone methyl-transferase Ash1l were required later to maintain memory over weeks. These results identify a critical Camta1-Tcf4-Ash1l thalamo-cortical transcriptional cascade required for memory stabilization, and puts forth a model where the sequential, multi-step, recruitment of circuit-specific transcriptional programs enable memory maintenance over progressively longer time-scales.