MIC-Drop-seq: Scalable single-cell phenotyping of mutant vertebrate embryos

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Advances in genome engineering and single-cell RNA sequencing (scRNAseq) have revolutionized the ability to precisely map gene functions, yet scaling these techniques for large-scale genetic screens in animals remains challenging. We combined high-throughput gene disruption in zebrafish embryos via Multiplexed Intermixed CRISPR Droplets with phenotyping by multiplexed scRNAseq (MIC-Drop-seq). In one MIC-Drop-seq experiment, we intermixed and injected droplets targeting 50 transcriptional regulators into 1,000 zebrafish embryos, followed by pooled scRNAseq. Tissue-specific gene expression and cell abundance analysis of demultiplexed mutant cells recapitulated many known phenotypes, while also uncovering novel functions in brain and mesoderm development. We observed pervasive cell-extrinsic effects among these phenotypes, highlighting how whole-embryo sequencing captures complex developmental interactions. Thus, MIC-Drop-seq provides a powerful and scalable platform for mapping gene functions in vertebrate development with cellular resolution.

Article activity feed