The Spinal Cord-Gut Axis Regulates Gut Microbial Homeostasis: Insights from a New Murine Metagenomic Catalog

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The spinal cord, a nexus for brain-body crosstalk, controls gut physiology and microbial homeostasis. Here, >6,500 microbial metagenome-assembled genomes were recovered de novo , from male and female C57BL/6 mice gut metagenomes before and up to 6 months after disrupting the “spinal cord-gut axis”. This “Mouse B6 Gut Catalog” improved or doubled species- and strain-level representation in other published catalogs. Analyses showed that breaking the spinal cord-gut axis caused persistent microbial changes that varied by sex, spinal lesion level, and time. A key bacterium, Lactobacillus johnsonii , was consistently reduced, and feeding this to mice with a clinically relevant spinal cord injury improved host health. Genome-resolved, community-contextualized metabolic profiling showed that spinal-dependent effects on microbe-encoded carbohydrate metabolism explain the reduction of L. johnsonii . These data improve murine microbiome catalogs and emphasize that mammalian health and gut ecosystem function depend on a functional spinal cord-gut axis.

Article activity feed