Dharma: A novel machine learning framework for pediatric appendicitis—diagnosis, severity assessment and evidence-based clinical decision support
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background
Acute appendicitis remains a challenging diagnosis in pediatric populations, with high rates of misdiagnosis and negative appendectomies despite advances in imaging modalities. Current diagnostic tools, including clinical scoring systems like Alvarado and Pediatric Appendicitis Score (PAS), lack sufficient sensitivity and specificity, while reliance on CT scans raises concerns about radiation exposure, contrast hazards and sedation in children. Moreover, no established tool effectively predi c ts progression from uncomplicated to complicated appendicitis, creating a critical gap in clinical decision-making.
Objective
To develop and evaluate a machine learning model that integrates clinical, laboratory, and radiological findings for accurate diagnosis and complication prediction in pediatric appendicitis and to deploy this model as an interpretable web-based tool for clinical decision support.
Methods
We analyzed data from 780 pediatric patients (ages 0-18) with suspected appendicitis admitted to Children’s Hospital St. Hedwig, Regensburg, between 2016 and 2021. For severity prediction, our dataset was augmented with 430 additional cases from published literature and only the confirmed cases of acute appendicitis(n=602) were used. After feature selection using statistical methods and recursive feature elimination, we developed a Random Forest model named Dharma, optimized through hyperparameter tuning and cross-validation. Model performance was evaluated on independent test sets and compared with conventional diagnostic tools.
Results
Dharma demonstrated superior diagnostic performance with an AUC-ROC of 0.96 (±0.02 SD) in cross-validation and 0.97-0.98 on independent test sets. At an optimal threshold of 64%, the model achieved specificity of 88%-98%, sensitivity of 89%-95%, and positive predictive value of 93%-99%. For complication prediction, Dharma attained a sensitivity of 93% (±0.05 SD) in cross-validation and 96% on the test set, with a negative predictive value of 98%. The model maintained strong performance even in cases where the appendix could not be visualized on ultrasonography (AUC-ROC 0.95, sensitivity 89%, specificity 87% at the threshold of 30%).
Conclusion
Dharma is a novel, interpretable machine learning based clinical decision support tool designed to address the diagnostic challenges of pediatric appendicitis by integrating easily obtainable clinical, laboratory, and radiological data into a unified, real-time predictive framework. Unlike traditional scoring systems and imaging modalities, which may lack specificity or raise safety concerns in children, Dharma demonstrates high accuracy in diagnosing appendicitis and predicting progression from uncomplicated to complicated cases, potentially reducing unnecessary surgeries and CT scans. Its robust performance, even with incomplete imaging data, underscores its utility in resource-limited settings. Delivered through an intuitive, transparent, and interpretable web application, Dharma supports frontline providers—particularly in low- and middle-income settings—in making timely, evidence-based decisions, streamlining patient referrals, and improving clinical outcomes. By bridging critical gaps in current diagnostic and prognostic tools, Dharma offers a practical and accessible 21st-century solution tailored to real-world pediatric surgical care across diverse healthcare contexts. Furthermore, the underlying framework and concepts of Dharma may be adaptable to other clinical challenges beyond pediatric appendicitis, providing a foundation for broader applications of machine learning in healthcare.
Author Summary
Accurate diagnosis of pediatric appendicitis remains challenging, with current clinical scores and imaging tests limited by sensitivity, specificity, predictive values, and safety concerns. We developed Dharma, an interpretable machine learning model that integrates clinical, laboratory, and radiological data to assist in diagnosing appendicitis and predicting its severity in children. Evaluated on a large dataset supplemented by published cases, Dharma demonstrated strong diagnostic and prognostic performance, including in cases with incomplete imaging—making it potentially especially useful in resource-limited settings for early decision-making and streamlined referrals. Available as a web-based tool, it provides real-time support to healthcare providers in making evidence-based decisions that could reduce negative appendectomies while avoiding hazards associated with advanced imaging modalities such as sedation, contrast, or radiation exposure.
Furthermore, the open-access concepts and framework underlying Dharma have the potential to address diverse healthcare challenges beyond pediatric appendicitis.