Genome-Wide Interrogation of SARS-CoV-2 RNA-Protein Interactions Uncovers Hidden Regulatory Sites
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The global impact of the COVID-19 pandemic underscores the critical need for a comprehensive understanding of SARS-CoV-2 replication mechanisms. While the central roles of the RNA dependent RNA polymerase (NSP12), primase protein (NSP8), and nucleocapsid protein (N) in the virus life cycle are extensively studied, the precise nature of their interactions with the full-length viral RNA genome remain incompletely characterized. In this study, we sought to address this knowledge gap by employing enhanced crosslinking and immunoprecipitation (eCLIP) to map the binding sites of NSP8, NSP12, and N proteins across the SARS-CoV-2 genome at early stages of viral RNA and protein synthesis and late stages of virion assembly. Our findings revealed interactions of NSP8 and NSP12 to the 5’ and 3’ untranslated regions (UTRs) of both positive and negative sense RNA, regions known to regulate viral replication, transcription, and translation. We identified a surprising and essential NSP12 binding site within the RNA sequence encoding the conserved Y1 domain of NSP3, which regulates RNA abundance upstream of the site. Additionally, we found that N protein interacts with the 5’ UTR and influences translation efficiency. Finally, we report a novel regulatory function of N protein in modulating ribosomal frameshifting proximal to the frameshift element, a crucial process for maintaining viral protein stoichiometry. Our results provide a detailed molecular map of SARS-CoV-2 protein-RNA interactions, revealing potential therapeutic targets for attenuating viral fitness and informing the development of next-generation antiviral strategies.