Complete Enzyme Clustering Enhances Coenzyme Q Biosynthesis via Substrate Channeling

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Metabolons - transient assemblies of sequential metabolic enzymes - facilitate the reactions of multi-step metabolic pathways, yet, how they mechanistically bolster metabolic flux remains unknown. Here, we investigate the molecular determinants of metabolon formation in coenzyme Q (CoQ) biosynthesis using coarse-grained molecular dynamics simulations and biochemical experiments. We show that the COQ metabolon forms at the critical region of a phase transition, where both metabolon clustering and metabolic flux exhibit coordinated sigmoidal responses to changes in protein-protein interaction strength. These complete metabolons enable substrate channeling between sequential enzymes, leading to a crucial enhancement of CoQ production efficiency. Selectively disrupting protein-protein interactions and randomly shuffling the interaction network demonstrate that protein-proximity rather than fine structure of the metabolon clusters is imperative for substrate channeling. Grounded in both experiment and simulation, these findings provide a framework for understanding the organization and function of metabolons across diverse metabolic pathways.

Article activity feed