A dataset of adult heart and liver mass after placental Insulin-like growth factor 1 overexpression and partial knockout in mice

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The placenta is an important producer of hormones essential for fetal development. Insulin-like growth factor 1 (IGF1) is a hormone primarily produced in the placenta in utero and is an important regulator of various developmental pathways including those in heart and liver. Embryonic disruptions in these developmental pathways can lead to lifelong changes and are often associated with chronic disease. Further, the placenta has sex-specific impacts on offspring development in response to hormonal changes. Previous work has shown that altered expression of Igf1 in the placenta results in sexually dimorphic changes to placental and fetal developmental outcomes. Here, mice underwent placental-targeted CRISPR manipulation for overexpression or partial knockout of Igf1 . At the time of euthanasia, heart and liver tissues were collected and weighed. This dataset presents the heart and liver mass of these postnatal mice. There was a significant increase in proportional heart mass in placental Igf1 overexpression adult female mice and a trending increase in proportional liver mass in placental Igf1 overexpression adult male mice. No significant changes in heart or liver mass were seen in placental Igf1 partial knockout mice. These data provide insight into the impact of placental IGF1 on long-term heart and liver development.

VALUE OF THE DATA

  • There is significant evidence for the role of early genetic changes in influencing long-term health outcomes, as laid out by the Developmental Origins of Health and Disease (DOHaD) hypothesis [1]. According to this hypothesis, genetic factors may be critical in determining the timing and severity of chronic disease, with varying effects based on sex. Genetics of the placenta, which makes up the maternal-fetal interface, plays an important role in modulating exposures associated with the DOHaD hypothesis [2].

  • The placenta provides essential hormones to the fetus during pregnancy [3]. Placental changes are associated with the development of chronic disease and metabolic changes [4,5]. Disruptions in placental functions have been linked to defects including congenital heart disease which affects approximately 40,000 babies each year in the United States [6,7]. The placenta is also linked to metabolic diseases later in life such as nonalcoholic fatty liver disease, a chronic liver disease which has increased in prevalence by over 50% from 1990 to 2019 [5,8,9].

  • Insulin-like growth factor 1 (IGF1) is a placentally produced factor that regulates pathways involved in fetal growth and development and has been shown to be critical in growth of the heart and liver [10-13]. Despite the importance of the placenta and IGF1 in heart and liver growth, specific links between placental Igf1 expression and developmental outcomes remain understudied.

  • Placental function is known to have sex-specific impacts on fetal growth [14]. Further, Igf1 expression in the placenta is linked to differences in offspring developmental outcomes by sex [15]. Placental Igf1 overexpression and knockout affects offspring in a sexually dimorphic manner. IGF1 is a hormone and interacts with sex hormones, likely contributing to sex differences in response to changes in Igf1 expression [16]. Further research, including the work done to produce this dataset, may help clarify the role of placenta Igf1 expression in fetal outcomes, specifically regarding sex differences.

  • The data presented in this paper provide insight into the effects of placental Insulin-like growth factor 1 overexpression and partial knockout on adult heart and liver mass. More research is needed to understand specific functional impacts on these organs. Further, understanding the effects of placental genetic changes may support the development of future treatments and therapies for placental insufficiencies.

Article activity feed