Joint Modeling of Longitudinal Biomarker and Survival Outcomes with the Presence of Competing Risk in Nested Case-Control Studies with Application to the TEDDY Microbiome Dataset

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Motivation

Large-scale prospective cohort studies collect longitudinal biospecimens alongside time-to-event outcomes to investigate biomarker dynamics in relation to disease risk. The nested case-control (NCC) design provides a cost-effective alternative to full cohort biomarker studies while preserving statistical efficiency. Despite advances in joint modeling for longitudinal and time-to-event outcomes, few approaches address the unique challenges posed by NCC sampling, non-normally distributed biomarkers, and competing survival outcomes.

Results

Motivated by the TEDDY study, we propose “JM-NCC”, a joint modeling framework designed for NCC studies with competing events. It integrates a generalized linear mixed-effects model for potentially non-normally distributed biomarkers with a cause-specific hazard model for competing risks. Two estimation methods are developed. fJM-NCC leverages NCC sub-cohort longitudinal biomarker data and full cohort survival and clinical metadata, while wJM-NCC uses only NCC sub-cohort data. Both simulation studies and an application to TEDDY microbiome dataset demonstrate the robustness and efficiency of the proposed methods.

Article activity feed