The alternative initiation factor eIF2A regulates 40S subunit turnover in ribosome-associated quality control
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The noncanonical translation initiation factor eIF2A plays critical roles in diverse cellular processes, including the integrated stress response, neurodegeneration and tumorigenesis. However, the precise molecular mechanism underlying eIF2A’s function remains poorly understood. Here, we exploit a TurboID-based proximity labeling combined with mass spectrometry to systematically map the interactome of eIF2A during homeostasis and stress. Combining polysome gradients with TurboID, we zoom into the interactions of eIF2A with the 40S small ribosomal subunit and map the eIF2A binding site close to the mRNA entry channel. We identify a network of interactors that link eIF2A to ribosome-associated quality control, including its strong interaction with G3BP1-USP10 complexes as well as RPS2 and RPS3. In the absence of eIF2A, RPS2 and RPS3 ubiquitination is diminished specifically upon ribosome stalling. 40S-specific footprinting in eIF2A knockout cells shows minimal changes in 5’UTR occupancy, consistent with a limited role for eIF2A in translation initiation. Using dynamic SILAC mass spectrometry, we characterize the novel function of eIF2A in ribosome-associated quality control and show that eIF2A antagonizes USP10-dependent rescue of 40S ribosomes, resulting in altered turnover of 40S subunits upon cellular stress. Collectively, our study identifies a previously unknown link between eIF2A and ribosome-associated quality control, implies that eIF2A promotes translation fidelity by tuning 40S ribosome rescue under stress and warrants further investigations into the role of ribosome-associated quality control in tumorigenesis.