Mechanosensitive Endothelial METTL7A Regulates Internal m 7 G mRNA Methylation and Protects Against Atherosclerosis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Internal N 7 -methylguanosine (m 7 G) is a recently identified chemical modification of mammalian mRNA and a component of the epitranscriptome. While the epitranscriptome plays a key role in regulating RNA metabolism and cellular function, the specific contribution of internal m 7 G to cardiovascular health and disease remains unknown. Atherosclerosis preferentially develops at sites where disturbed blood flow activates endothelial cells, but whether internal m 7 G and its regulatory machinery influence endothelial mechanotransduction and atherogenesis is unclear.

METHODS

We integrated epitranscriptomic profiling, human tissue analysis, genetically modified mouse models, and targeted nanomedicine approaches to investigate the role of Methyltransferase-like protein 7A (METTL7A), a putative internal m 7 G methyltransferase, in regulating the flow-sensitive endothelial transcriptome and atherosclerosis. Vascular endothelial cells were subjected to well-defined athero-protective and athero-prone flow waveforms in vitro and in vivo . METTL7A function was assessed using RNA sequencing (RNA-seq), liquid chromatography-tandem mass spectrometry (LC-MS/MS), crosslinking immunoprecipitation sequencing (CLIP-seq), RNA stability assays, and a CRISPR-Cas-inspired RNA targeting system (CIRTS). METTL7A expression in human coronary arteries with and without atherosclerosis was evaluated by RNA-seq and immunostaining. In vivo atherosclerosis studies were conducted in both global and endothelial-specific Mettl7a1 knockout mice. Endothelial METTL7A expression was restored using cationic polymer-based nanoparticles delivering CDH5 promoter-driven METTL7A plasmids or VCAM1-targeted lipid nanoparticles delivering N1-methylpseudouridine (m¹Ψ)-modified METTL7A mRNA.

RESULTS

Athero-protective unidirectional flow significantly induced METTL7A expression, which promoted internal m 7 G methylation of endothelial transcripts, while other major epitranscriptomic marks and cap-associated m 7 G were not affected by METTL7A. METTL7A preferentially binds to AG-enriched motifs in protein-coding mRNAs and plays a key role in regulating KLF4 and NFKBIA transcripts, enhancing their internal m 7 G and stability and supporting vascular homeostasis. In contrast, endothelial METTL7A expression was significantly reduced by disturbed blood flow and in human atherosclerotic lesions. Global or endothelial-specific loss of METTL7A exacerbated disturbed flow-induced atherosclerosis in mice, independent of serum lipid levels. Restoration of endothelial METTL7A, via nanoparticle-mediated plasmid or m 1 Ψ mRNA delivery, markedly reduced lesion formation in Mettl7a1 ⁻/⁻ and ApoE ⁻/⁻ mice.

CONCLUSIONS

These findings establish METTL7A as a previously unrecognized mechanosensitive methyltransferase that maintains endothelial homeostasis by stabilizing key anti-inflammatory transcripts, KLF4 and NFKBIA, through internal m 7 G methylation. Loss of METTL7A disrupts endothelial function and accelerates atherogenesis in response to disturbed flow. Therapeutic restoration of endothelial METTL7A, via targeted nanoparticle-mediated gene or m 1 Ψ mRNA delivery, significantly lessens atherosclerosis. Collectively, these results uncover a novel epitranscriptomic mechanism governing vascular health and position METTL7A as a promising target for precision nanomedicine in atherosclerotic cardiovascular disease.

Article activity feed