Tau Oligomerization Drives Neurodegeneration via Nuclear Membrane Invagination and Lamin B Receptor Binding in Alzheimer’s disease
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The microtubule-associated protein tau aggregates into oligomeric complexes that highly correlate with Alzheimer’s disease (AD) progression. Increasing evidence suggests that nuclear membrane disruption occurs in AD and related tauopathies, but whether this is a cause or consequence of neurodegeneration remains unclear. Using the optogenetically inducible 4R1N Tau::mCherry::Cry2Olig (optoTau) system in iPSC-derived neurons, we demonstrate that tau oligomerization triggers nuclear rupture and nuclear membrane invagination. Pathological tau accumulates at sites of invagination, inducing structural abnormalities in the nuclear envelope and piercing into the nuclear space. These findings were confirmed in the humanized P301S tau (PS19) transgenic mouse model, where nuclear envelope disruption appeared as an early-onset event preceding neurodegeneration. Further validation in post-mortem AD brain tissues revealed nuclear lamina disruption correlating with pathological tau emergence in early-stage patients. Notably, electron microscopy shows that tau-induced nuclear invagination triggers global chromatin reorganization, potentially driving aberrant gene expression and protein translation associated with AD. These findings suggest that nuclear membrane disruption is an early and possibly causative event in tau-mediated neurodegeneration, establishing a mechanistic link between tau oligomerization and nuclear stress. Further investigation into nuclear destabilization could inform clinical strategies for mitigating AD pathogenesis.