Prelimbic cortical excitatory overdrive and inhibitory underdrive accompany environmental suppression of food seeking
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cues associated with food, such as fast-food advertising, can provoke food cravings and may lead to unhealthy overeating. Environmental enrichment (EE) that enhances cognitive and physical stimulation can reduce cue-evoked sucrose seeking in mice and recruitment of sucrose cue-reactive neurons or ‘neuronal ensembles’ in the prelimbic cortex (PL), which regulates appetitive behaviors. Hence, EE provides us with a behavioral model and neuronal targets to identify ‘anti-craving’ relevant mechanisms. Here, we investigated in the PL how EE modulated neuronal excitability and activity patterns in cue-reactive neuronal populations. Chemogenetic inhibition of cue-reactive neurons in PL blocked cue-evoked sucrose seeking, thereby confirming the function of these neurons in sucrose cue memory. EE boosted the baseline excitability of ‘originally’, or before EE exposure, cue-reactive, excitatory pyramidal cells in PL. Furthermore, their sucrose cue-specificity was lost – resulting in their persistent activation and non-cue selective activation or ‘excitatory overdrive’. Furthermore, EE reduced recruitment of cue-reactive, inhibitory interneurons reflecting ‘inhibitory underdrive’. Taken together, impaired neuronal food cue processing due to simultaneous prefrontal cortical excitatory ‘overdrive’ and inhibitory ‘underdrive’ likely underlies EE’s anti-craving action, thereby serving as potential neurophysiological targets to develop novel medications that help control food cravings.