Substrate heterogeneity promotes cancer cell dissemination through interface roughening
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
While tumor malignancy has been extensively studied under the prism of genetic and epigenetic heterogeneity, tumor cell states also critically depend on reciprocal interactions with the microenvironment. This raises the hitherto untested possibility that heterogeneity of the untransformed tumor stroma can actively fuel malignant progression. As biological heterogeneity is inherently difficult to control, we adopted a reductionist approach and let tumor cells invade micro-engineered environments harboring obstacles with precision-controlled geometry. We find that not only the presence of obstacles, but more surprisingly their spatial disorder, causes a drastic shift from a collective to a single-cell mode of invasion – comparable in strength to cadherin loss. Combining live-imaging and perturbation experiments with minimal biophysical modeling, we demonstrate that cell detachments result both from local geometrical constraints and a global integration of spatial disorder over time. We show that different types of microenvironments map onto different universality classes of invasion dynamics - homogeneous substrates follow Kardar–Parisi–Zhang (KPZ) scaling, while disordered ones exhibit exponents consistent with KPZ with quenched disorder (KPZq). Our findings highlight generic physical principles for how the mode of cancer cell invasion depends on environmental heterogeneity, with potential implications to understand tumor evolution in vivo .