Semi-automatic Geometrical Reconstruction and Analysis of Filopodia Dynamics in 4D Two-Photon Microscopy Images
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background
Filopodia are thin and dynamic membrane protrusions that play a crucial role in cell migration, axon guidance, and other processes where cells explore and interact with their surroundings. Historically, filopodial dynamics have been studied in great detail in 2D in cultured cells, and more recently in 3D culture as well as living brains. However, there is a lack of efficient tools to trace and track filopodia in 4D images of complex brain cells.
Results
To address this issue, we have developed a semi-automatic workflow for tracing filopodia in 3D images and tracking the traced filopodia over time. The workflow was developed based on high-resolution data of photoreceptor axon terminals in the in vivo context of normal Drosophila brain development, but devised to be applicable to filopodia in any system, including at different temporal and spatial scales. In contrast to the pre-existing methods, our workflow relies solely on the original intensity images without the requirement for segmentation or complex preprocessing. The workflow was realized in C++ within the Amira software system and consists of two main parts, dataset pre-processing, and geometrical filopodia reconstruction, where each of the two parts comprises multiple steps. In this paper, we provide an extensive workflow description and demonstrate its versatility for two different axo-dendritic morphologies, R7 and Dm8 cells. Finally, we provide an analysis of the time requirements for user input and data processing.
Conclusion
To facilitate simple application within Amira or other frameworks, we share the source code, which is available at https://github.com/zibamira/filopodia-tool .