Stick-slip motion and universal statistics of cargo transport within living cells

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cargo transport within cells is a vital biological process that relies on the intricate interplay between motor proteins, microtubules, and the complex intracellular environment. In this study, we unveil a universal transport mechanism characterized by stick-slip motion, which governs the dynamics of intracellular vesicle transport. By analyzing a comprehensive dataset of vesicle trajectories across various cell types and intracellular environments, we demonstrate that the cargo velocities consistently follow a Gamma distribution, revealing a common statistical pattern amidst the diversity of biological cargoes. Our experimental findings are well-described by a theoretical model that connects the Brownian-correlated kinetic friction between motor-cargo complexes and their surroundings to the observed universal Gamma distribution of cargo velocities. This model elucidates the stick-slip dynamics governing intracellular cargo transport, which are pertinent to various cellular processes such as vesicle budding, organelle transport, and cell migration.

Article activity feed