Stick-slip motion and universal statistics of cargo transport within living cells
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cargo transport within cells is a vital biological process that relies on the intricate interplay between motor proteins, microtubules, and the complex intracellular environment. In this study, we unveil a universal transport mechanism characterized by stick-slip motion, which governs the dynamics of intracellular vesicle transport. By analyzing a comprehensive dataset of vesicle trajectories across various cell types and intracellular environments, we demonstrate that the cargo velocities consistently follow a Gamma distribution, revealing a common statistical pattern amidst the diversity of biological cargoes. Our experimental findings are well-described by a theoretical model that connects the Brownian-correlated kinetic friction between motor-cargo complexes and their surroundings to the observed universal Gamma distribution of cargo velocities. This model elucidates the stick-slip dynamics governing intracellular cargo transport, which are pertinent to various cellular processes such as vesicle budding, organelle transport, and cell migration.