Wolbachia uses ankyrin repeats to target specific fly proteins
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Arthropods, the most diverse phylum on Earth, are hosts to a plethora of bacterial parasites that secrete various effectors of unknown function during infection. The most prevalent of these is the intracellular bacterium Wolbachia pipientis . The microbe infects between 40-60% of insect species, causes important reproductive manipulations, and limits virus replication in arthropod vectors, becoming a promising biocontrol agent. Understanding the molecular basis of Wolbachia infection and Wolbachia- induced phenotypes is critical to the use of Wolbachia in vector control. These Wolbachia ankyrin repeat proteins (WARPs) represent a highly dynamic and diverse part of the Wolbachia pangenome and remain thus far, largely uncharacterized. Here, we perform molecular and genetic screens to identify interactions between Wolbachia w Mel WARPs and their target host proteins in Drosophila melanogaster . Our results identify strong interactions of two Wolbachia proteins, WARP434 and WARP754, with two host targets (CG11327 and Ptp61F, respectively). Heterologous expression of these two WARPs is extremely toxic in Drosophila tissues and the toxicity is dependent on the ankyrin repeat domain of each WARP. Importantly, knockdown of the host targets alleviates toxicity, confirming WARP/target interactions. Finally, antibodies targeting both WARPs show expression by Wolbachia during infection of Drosophila cells. Understanding how Wolbachia manipulates its host biology and which host pathways it targets during infection will help us divine how the most prevalent intracellular bacterial parasite on Earth interacts with its insect hosts at the molecular level. Our screen is the first step towards that goal.
Importance
Molecular interactions drive co-evolutionary arms races between hosts and pathogens. These interactions shape the structure and function of both host and parasite proteins, enabling immunity or virulence during infection. Understanding the molecular details that unfold during these events illustrates not only how hosts and parasites co-evolve at the molecular level but also may help characterize the function of poorly understood proteins. The most prevalent intracellular infection on earth is Wolbachia pipientis, with between 40-60% of insects harboring the bacterial symbiont. Understanding how Wolbachia infects host cells and the molecular tools it uses to alter cell biology is critical to the use of the microbe in vector control. Here, we identify Wolbachia proteins used by the symbiont to interface with specific host proteins. Understanding the molecular mechanisms underlying this host-microbe interaction will shed light on how an important symbiont, used in the control of vector populations and disease transmission, uses WARPs to interact with host targets and how targeting this host protein contributes to infection.