Benchmarking cerebellar organoids to model autism spectrum disorder and human brain evolution

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

While cortical organoids have been used to model different facets of neurodevelopmental conditions and human brain evolution, cerebellar organoids have not yet featured so prominently in the same context, despite increasing evidence of this brain regions importance for cognition and behavior. Here, we provide a longitudinal characterization of cerebellar organoids benchmarked against human fetal data and identify at very early stages of development a significant number of dynamically expressed genes relevant for neurodevelopmental conditions such as autism and attention deficit hyperactivity disorders. Then, we model an ASD mutation impacting CHD8, showing both granule cell and oligodendrocyte lineages prominently affected, resulting in altered network activity in more mature organoids. Lastly, using CRISPR/Cas9 editing, we also model an evolution-relevant mutation in a regulatory region of the CADPS2 gene. We investigate the effect of the derived allele exclusive to Homo sapiens, identifying a rerouting of the CADPS2-expression in rhombic lip cells, coupled with a different sensitivity to hypoxia which in turn lead to a differential timing of granule cell differentiation.

HIGHLIGHTS

  • Longitudinal characterization of cerebellar organoids uncovers disorder related genes especially at early stages of development

  • Mutation in CHD8 alter rhombic lip and oligodendrocytes differentiation via WNT pathway

  • Rerouting of CADPS2 expression, delaying differentiation and migration, in recent human evolution

IN BRIEF

Aprile and colleagues longitudinally profiled cerebellar organoids, benchmarking them against a fetal human atlas and identified a highly dynamic expression of genes related to cognitive and behavioral disorders especially at early stages of differentiation. Organoids were used to model the impact of a high-penetrance mutation associated with autism spectrum disorder and a high-frequency derived allele in Homo sapiens predicted to have played a role in recent brain evolution.

Article activity feed