Layer-specific spatiotemporal dynamics of feedforward and feedback in human visual object perception
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Visual object perception is mediated by information flow between regions of the ventral visual stream along feedforward and feedback anatomical connections. However, feedforward and feedback signals during naturalistic vision are rapid and overlapping, complicating their identification and precise functional specification. Here we recorded human layer-specific fMRI responses to naturalistic object images in early visual cortex (EVC) and lateral occipital complex (LOC) to isolate feedforward and feedback information signals spatially by their cortical layer specific termination pattern. We combined these layer-specific fMRI responses with electroencephalography (EEG) responses for the same images to segregate feedforward and feedback signals in both time and space. Feedforward signals emerge early in the middle layers of EVC and LOC, followed by feedback signals in the superficial layer of both regions, and the deep layer of EVC. Comparing the identified dynamics in LOC to a visual deep neural network (DNN), revealed that early feedforward signals in LOC encode medium complexity features, whereas later feedback signals increase the representational format to high complexity features. Together this specifies the spatiotemporal dynamics and functional role of feedforward and feedback information flow mediating visual object perception.