HSF1 remodels mitochondrial biogenesis and function in cancer cells via TIMM17A

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Mitochondria play critical roles in energy production and cellular metabolism. Despite the Warburg effect, mitochondria are crucial for the survival and proliferation of cancer cells. Heat Shock Factor 1 (HSF1), a key transcription factor in the cellular heat shock response, promotes malignancy and metastasis when aberrantly activated. To understand the multifaceted roles of HSF1 in cancer, we performed a genome-wide CRISPR screen to identify epistatic interactors of HSF1 in cancer cell proliferation. The verified interactors of HSF1 include those involved in DNA replication and repair, transcriptional and post-transcriptional gene expression, and mitochondrial functions. Specifically, we found that HSF1 promotes cell proliferation, mitochondrial biogenesis, respiration, and ATP production in a manner dependent on TIMM17A, a subunit of the inner membrane translocase. HSF1 upregulates the steady-state level of the short-lived TIMM17A protein via its direct target genes, HSPD1 and HSPE1, which encode subunits of the mitochondrial chaperonin complex and are responsible for protein refolding once imported into the matrix. The HSF1- HSPD1/HSPE1-TIMM17A axis remodels the mitochondrial proteome to promote mitochondrial translation and energy production, thereby supporting robust cell proliferation. Our work reveals a mechanism by which mitochondria adjust protein uptake according to the folding capacity in the matrix by altering TIM complex composition.

Article activity feed