Automatic Quantification of Ki-67 Labeling Index in Pediatric Brain Tumors Using Qupath
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The quantification of the Ki-67 labeling index (LI) is critical for assessing tumor proliferation and prognosis in tumors, yet manual scoring remains a common practice. This study presents an automated workflow for Ki-67 scoring in whole slide images (WSIs) using an Apache Groovy code script for QuPath, complemented by a Python-based post-processing script, providing cell density maps and summary tables. The tissue and cell segmentation are performed using StarDist, a deep learning model, and adaptive thresholding to classify Ki-67 positive and negative nuclei. The pipeline was applied to a cohort of 632 pediatric brain tumor cases with 734 Ki-67-stained WSIs from the Children’s Brain Tumor Network. Medulloblastoma showed the highest Ki-67 LI (median: 19.84), followed by atypical teratoid rhabdoid tumor (median: 19.36). Moderate values were observed in brainstem glioma-diffuse intrinsic pontine glioma (median: 11.50), high-grade glioma (grades 3 & 4) (median: 9.50), and ependymoma (median: 5.88). Lower indices were found in meningioma (median: 1.84), while the lowest were seen in low-grade glioma (grades 1 & 2) (median: 0.85), dysembryoplastic neuroepithelial tumor (median: 0.63), and ganglioglioma (median: 0.50). The results aligned with the consensus of the oncology, demonstrating a significant correlation in Ki-67 LI across most of the tumor families/types, with high malignancy tumors showing the highest proliferation indices and lower malignancy tumors exhibiting lower Ki-67 LI. The automated approach facilitates the assessment of large amounts of Ki-67 WSIs in research settings.