Automated detection of bottom-of-sulcus dysplasia on MRI-PET in patients with drug-resistant focal epilepsy

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background and Objectives

Bottom-of-sulcus dysplasia (BOSD) is a diagnostically challenging subtype of focal cortical dysplasia, 60% being missed on patients’ first MRI. Automated MRI-based detection methods have been developed for focal cortical dysplasia, but not BOSD specifically. Use of FDG-PET alongside MRI is not established in automated methods. We report the development and performance of an automated BOSD detector using combined MRI+PET data.

Methods

The training set comprised 54 mostly operated patients with BOSD. The test sets comprised 17 subsequently diagnosed patients with BOSD from the same center, and 12 published patients from a different center. 81% patients across training and test sets had reportedly normal first MRIs and most BOSDs were <1.5cm 3 .

In the training set, 12 features from T1-MRI, FLAIR-MRI and FDG-PET were evaluated using a novel “pseudo-control” normalization approach to determine which features best distinguished dysplastic from normal-appearing cortex. Using the Multi-centre Epilepsy Lesion Detection group’s machine-learning detection method with the addition of FDG-PET, neural network classifiers were then trained and tested on MRI+PET features, MRI-only and PET-only. The proportion of patients whose BOSD was overlapped by the top output cluster, and the top five output clusters, were assessed.

Results

Cortical and subcortical hypometabolism on FDG-PET were superior in discriminating dysplastic from normal-appearing cortex compared to MRI features. When the BOSD detector was trained on MRI+PET features, 87% BOSDs were overlapped by one of the top five clusters (69% top cluster) in the training set, 76% in the prospective test set (71% top cluster) and 75% in the published test set (42% top cluster). Cluster overlap was similar when the detector was trained and tested on PET-only features but lower when trained and tested on MRI-only features.

Conclusion

Detection of BOSD is possible using established MRI-based automated detection methods, supplemented with FDG-PET features and trained on a BOSD-specific cohort. In clinical practice, an MRI+PET BOSD detector could improve assessment and outcomes in seemingly MRI-negative patients being considered for epilepsy surgery.

Article activity feed