Macrophage Migration Inhibitory Factor Suppresses Natural Killer Cell Response and Promotes Hypoimmunogenic Stem Cell Engraftment Following Spinal Cord Injury

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Human induced pluripotent stem cells (iPSCs) offer immense potential as a source for cell therapy in spinal cord injury (SCI) and other diseases. The development of hypoimmunogenic, universal cells that could be transplanted to any recipient without requiring a matching donor, could significantly enhance their therapeutic potential and accelerate clinical translation. To create off-the-shelf hypoimmunogenic cells, we used CRISPR-Cas9 to delete B2M (HLA class I) and CIITA (master regulator of HLA class II). Double-knockout (DKO) iPSC-derived neural progenitor cells (NPCs) evaded T cell-mediated immune rejection in vitro and after grafting into the injured spinal cord of athymic rats and humanized mice. However, loss of HLA class I heightened susceptibility to host natural killer (NK) cell attack, limiting graft survival. To counter this negative effect, we engineered DKO NPCs to overexpress macrophage migration inhibitory factor (MIF), an NK cell checkpoint ligand. MIF expression markedly reduced NK cell-mediated cytotoxicity and improved long-term engraftment and integration of NPCs in the animal models for spinal cord injury. These findings demonstrate that MIF overexpression, combined with concurrent B2M and CIITA deletion, generates hiPSC neural derivatives that escape both T- and NK-cell surveillance. This strategy provides a scalable route to universal donor cells for regenerative therapies in SCI and potentially other disorders.

Article activity feed