A synthetic biology toolkit for interrogating plasmid-dependent methylotrophy and enhancing methanol-based biosynthesis of Bacillus methanolicus

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Bacillus methanolicus represents a thermophilic methylotroph whose methanol utilization depends on plasmid-encoded genes. It serves as a unique model for deciphering plasmid-dependent methylotrophy and an ideal chassis for low-carbon biomanufacturing using CO2-derived C1 substrates. Despite its evolutionary uniqueness and industrial potential, the lack of synthetic biology tools has hindered both mechanistic understanding and strain engineering. Here, we present a comprehensive synthetic biology platform comprising a high-efficiency electroporation protocol, a CRISPR method enabling robust and multiplex genome editing, diverse neutral loci for gene integration and overexpression, and a cloud-based genome-scale metabolic model iBM822 for user-friendly biodesign. Leveraging this toolkit, we systematically dissected plasmid-dependent methylotrophy, host restriction-modification systems, and functional significance of the chromosomal methylotrophic genes through targeted deletion. To address plasmid loss-induced strain degeneration, we integrated the large endogenous plasmid pBM19 into the chromosome for stable and intact methylotrophic growth. Finally, by integrating metabolic modeling with CRISPR editing, we engineered L-arginine feedback regulation to achieve the first L-arginine biosynthesis from methanol. This study establishes a synthetic biology framework for B. methanolicus, promoting mechanistic exploration of methylotrophy and low-carbon biomanufacturing.

Article activity feed